
Generalized Ornstein–Uhlenbeck processes and associated self-similar processes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 3961

(http://iopscience.iop.org/0305-4470/36/14/303)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 3961–3982 PII: S0305-4470(03)55590-1

Generalized Ornstein–Uhlenbeck processes and
associated self-similar processes

S C Lim and S V Muniandy

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia

E-mail: sclim@pkrisc.cc.ukm.my

Received 29 October 2002, in final form 7 February 2003
Published 26 March 2003
Online at stacks.iop.org/JPhysA/36/3961

Abstract
We consider three types of generalized Ornstein–Uhlenbeck processes: the
stationary process obtained from the Lamperti transformation of fractional
Brownian motion, the process with stretched exponential covariance and
the process obtained from the solution of the fractional Langevin equation.
These stationary Gaussian processes have many common properties, such
as the fact that their local covariances share a similar structure and they
exhibit identical spectral densities at large frequency limit. In addition, the
generalized Ornstein–Uhlenbeck processes can be shown to be local stationary
representations of fractional Brownian motion. Two new self-similar Gaussian
processes, in addition to fractional Brownian motion, are obtained by applying
the (inverse) Lamperti transformation to the generalized Ornstein–Uhlenbeck
processes. We study some of the properties of these self-similar processes
such as the long-range dependence. We give a simulation of their sample paths
based on numerical Karhunan–Loeve expansion.

PACS numbers: 02.50.Ey, 05.10.Gg

1. Introduction

Brownian motion (BM) X(t) and Ornstein–Uhlenbeck (OU) process Y (t) are two of the
most well studied and widely applied stochastic processes. Despite certain differences in
their properties (notably the OU process is stationary whereas BM is non-stationary and self-
similar), these two processes have the same local behaviour. In particular, both processes are
nowhere differentiable and they are Holder continuous of order 1/2. The OU process can be
regarded as the stationary analogue of BM. Its spectral density S(ω) = (ω2 + a2)−1, a > 0,
becomes the spectral density of BM in the limit a → 0 or the high-frequency limit. The
OU process can be seen as a time-changed BM; the two process are connected by a time
transformation Y (t) = e−atX(e2at )/

√
2a or conversely X(t) = √

tY
(

1
2a

log t
)
. This time
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transformation is a special case of the Lamperti transformation [1], which provides a one-
to-one correspondence between stationary and self-similar processes. In fact, the similarity
in the local properties of these two processes can be attributed to this time transformation
relation.

BM has been successfully extended to fractional Brownian motion (FBM) [2], which
has found wide applications in hydrology, condensed matter physics, biological physics,
econophysics, telecommunication networks, geoscience and other fields [3–7]. A natural
question arises whether there exists a generalized OU process which is related to FBM in a
similar way as the OU process is linked to BM. If a generalized OU process is defined as a
Gaussian stationary process characterized by a parameter, say α, so that it becomes an OU
process when α = 1, then there exist several such processes. In this paper, we consider three
types of generalized OU processes based on the solution of the fractional Langevin equation,
the Lamperti transformation of FBM and the process with stretched exponential covariance.
Although it seems only one of these processes can be regarded as the genuine stationary
analogue of FBM, all three processes have many properties in common. They have the same
spectral density as that of FBM in the asymptotic high-frequency limit. It can also be shown
that these generalized OU processes can be regarded as the local stationary representations of
FBM [8].

So far FBM is the most widely used Gaussian self-similar process for modelling
phenomena with scaling and long memory. Although it is one of the simplest self-similar
processes with good properties such as stationary increments, FBM has its limitations, in
particular its properties are determined by a single parameter, the Hurst index. In view of
the increasing interest in the modelling of long memory phenomena recently [9], it would be
useful to consider more general self-similar processes which are characterized by more than
one parameter but still preserve some of the good properties (or their weaker versions) of FBM.
For this purpose, we apply the Lamperti transformation to the generalized OU processes to
obtain two new self-similar processes. We study the properties of these processes such as long-
range dependence (LRD) and weaker stationarity of their increments. Computer simulations
of the spectral densities of generalized OU processes, their sample paths as well as those of
the self-similar counterparts are also given.

2. Generalized OU processes

In this section, we consider three types of generalized OU processes: (a) the stationary process
obtained by applying the Lamperti transformation to FBM; (b) the process with stretched
exponential covariance; (c) the process obtained from the solution of the fractional Langevin
equation.

2.1. Lamperti transformation of FBM

FBM is a Gaussian process defined by [2]

X1(t) = 1

�(H + 1/2)

[∫ 0

−∞
(t − s)H−1/2 − (−s)H−1/2 dB(s) +

∫ t

0
(t − s)H−1/2 dB(s)

]
(1)

where 0 < H < 1, �(x) is the gamma function and B(t) is BM. It has zero mean and
covariance

〈X1(t)X1(s)〉 = 1
2 [|t|2H + |s|2H − |t − s|2H ] (2)

where the normalization X1(t) → X1(t)
/√〈

X2
1(1)

〉
is used. FBM is said to be H-self-similar
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(H-ss) in the sense that

X1(at) = aHX1(t) (3)

where equality is in the finite joint distributions. The increments of FBM are stationary with

〈(X1(t + τ ) − X1(t))
2〉 = τ 2H . (4)

FBM is the unique Gaussian self-similar process with stationary increments [10]. These
two properties (i.e. self-similarity and stationary of increments) ensure a generalized spectral
density for FBM

S1(ω) = cH

ω2H+1
(5)

where cH is an H-dependent constant.
The Lamperti transformation [1] provides one-to-one correspondence between a self-

similar process X(t) and a stationary process Y (t) by the following time transformation

X(t) = tH Y (b ln t) (6)

for t > 0, b > 0 and X(0) = 0. Conversely

Y (t) = e−cH tX(ect ) (7)

for t ∈ R and c ∈ R. The stationary process associated with FBM through the Lamperti
transformation is given by

Y1(t) = e−2aHt

√
4aH

X1(e2at ) (8)

where the constants are chosen such that Y1(t) becomes the ordinary OU process when
H = 1/2. This is a Gaussian process with zero mean and covariance

C1(τ ) = 1

8Ha
[e2Haτ + e−2Haτ − |eaτ − e−aτ |2H ]

= 1

4Ha
[cosh(2Haτ) − 22H−1(sinh(aτ))2H ]. (9)

By using the expansion (1 + x)α = 1 +
∑∞

j=1

(
α

j

)
xj with

(
α

j

) = α(α−1)···(α−j+1)

j ! , we obtain

C1(τ ) = 1

8Ha
[e−2Haτ + e2Haτ (1 − (1 − e−2aτ )2H )]

= 1

8Ha

e−2Haτ +
∞∑

j=1

(−1)j+1

(
2H

j

)
e−2a(j−H)τ

 . (10)

For τ � 1,

〈(Y1(t + τ ) − Y1(t))
2〉 ∼ τ 2H (11)

which shows that Y1(t) is locally asymptotically stationary (or locally stationary for short).
The large lag asymptotic behaviour of the covariance of Y1(t) can be obtained from (9). As
τ → ∞, we obtain

C1(τ ) ≈ 1

8Ha
[e−2Haτ − 2H e−2(1−H)aτ + H(2H − 1) e−2(1−H)aτ ]

∼ O e−2aτ(H∧(1−H)) (12)

where x ∧ y denotes the minimum of (x, y). Thus, for large τ, Y1(t) is equivalent to the sum
of a few mutually independent Gaussian Markov processes. The leading term of C1(τ ) for
τ → ∞ is C1(τ ) ∼ e−2Haτ for H < 1/2, and C1(τ ) ∼ e−2(1−H)aτ for H > 1/2.
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The Fourier transform of equation (10) gives the spectral density of Y1(t) as

S1(ω) =
∫ ∞

−∞
C1(τ ) e−iωτ dτ

= 1

2

 1

(2Ha)2 + ω2
+

1

H

∞∑
j=1

(−1)j+1

(
2H

j

)
(j − H)

(2a(j − H))2 + ω2


(13)

which reduces to (a2 + ω2)−1 for the OU process when H = 1/2. By applying the Laplace
transform to equation (9) it can be shown that the spectral density of Y1(t) can be expressed
in the following form [11]:

S1(ω) = c1(H, a)

∣∣�(1 − H + iω
2a

)∣∣2∣∣�( 1
2 + i ω

2a

)∣∣2(H 2 + ω2

4a2

) (14)

where c1(H, a) is a constant that depends on H and a. With the help of the following asymptotic
limit for the gamma function (see [12], p 760),

|�(x + i|y|)| =
√

2π |y|x−1/2 e− π |y|
2

[
1 + O

(
1

y

)]
(15)

we obtain the asymptotic limit of S1(ω) as

S1(ω) ∼ |ω|−(2H+1) |ω| → ∞. (16)

We can also consider the ‘finite memory’ part of standard FBM, namely

X+
1 (t) =

√
2H

∫ t

0
(t − u)H−1/2 dB(u) (17)

where the normalization factor
√

2H is used so that the variance is |t|2H . X+
H (t) is also

known as FBM of Riemann–Liouville type (RL-FBM) [13]. It has zero mean and a rather
complicated covariance,〈

X+
1 (s)X+

1 (t)
〉 = 4HsH+1/2tH−1/2

(2H + 1)
2F1

(
1/2 − H, 1,H + 3/2,

s

t

)
(18)

for t > s > 0, where 2F1 is the Gauss hypergeometric function.
X+

1 is a self-similar process like X1, but its increments are non-stationary. Just as
the case of standard FBM, Lamperti transformation of RL-FBM gives a stationary process
Y +

1 (t) = e−2HatX+
1 (e2at ) with zero mean and covariance

C+
1 (τ ) = 〈

Y +
1 (t)Y +

1 (t + τ )
〉

= e−aτ

2a(H + 1/2)
2F1(1/2 − H, 1,H + 3/2, e−2aτ ). (19)

The large τ asymptotic of C+
τ (τ ) can be obtained by using the series expansion of

2F1(α, β, γ, z) [14],

2F1(α, β, γ, z) = �(γ )

�(α)�(β)

∞∑
j=0

�(α + j)�(β + j)

�(γ + j)

zj

j !
(20)

which gives for τ � 1,

C+
1 (τ ) ≈ e−aτ

2a(H + 1/2)

[
1 +

�(3/2 + H)�(3/2 − H)

�(1/2 − H)�(5/2 + H)
e−2aτ

]
. (21)
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Similar to the case of standard FBM, in the large τ limit, RL-FBM behaves like a sum of a
few independent OU processes.

The spectral density of Y +
1 (t) can be determined by applying Fourier transform to C+

1 (τ ),
which gives

S+
1 (ω) = �(3/2 + H)

2a(H + 1/2)�(1/2 − H)

∞∑
j=0

�(1/2 − H + j)

�(3/2 + H + j)

2(1 + 2j)a

((1 + 2j)a)2 + ω2

= 1

(H + 1/2)(ω2 + a2)
+

(�(1/2 + H))2 cos(πH)

2aπ

×
∞∑

j=1

�(1/2 − H + j)

�(3/2 + H + j)

2(1 + 2j)a

((1 + 2j)a)2 + ω2
. (22)

We can also show that the spectral density S+
1 (ω) approaches ω−(2H+1) in the limit ω → ∞.

Once again, by following the argument of Nuzman and Poor [11], we can show that the spectral
density of Y +

1 (t) can be expressed in the following compact form,

S+
1 (ω) = c+

1(a,H)
|�(1/2 + iw/(2a)|2
|�(1 + H + iω)|2 (23)

where c+
1 (a,H) is a constant. Again, by using (15), we obtain S+

1 (ω) ∼ ω−(2H+1) for ω → ∞.
Note that the Lamperti transformation of two versions of FBM results in two stationary

processes which have more properties in common as compared to their self-similar
counterparts. A heuristic explanation is that the stationary processes Y1 and Y +

1 can be
viewed roughly as the corresponding FBMs X1 and X+

1 on the logarithmic timescale. The
compression of the clock time t to logarithmic time transforms the memory of ‘infinite past’
(t = −∞ to t = 0) of standard FBM to a finite past (e−∞ = 0 to e0 = 1), whereas RL-FBM
begins at e0 = 1 in logarithmic time. Therefore, we may say that the two stationary processes
Y1 and Y +

1 started off at about the same time on the logarithmic scale, hence the similarities in
their properties.

2.2. Process with stretched exponential covariance

Another Gaussian stationary process which can be regarded as a generalized OU process is
one with mean zero and covariance given by the stretched exponential function,

C2(τ ) = 〈Y2(t + τ )Y2(t)〉 = A e−a|τ |α (24)

where 0 < α � 2, and A > 0, α > 0. Note that for α = 1, A = (2a)−1, we recover
the covariance of OU processes from (24). For a discussion on the positive definiteness of
equation (24), refer to [15]. Note that the stretched exponential function is also associated
with the Levy stable process as it is identical to the characteristic function of the symmetric
stable distribution [10]. For τ � 1, the increments of Y2(t) satisfy

〈(Y2(t + τ ) − Y2(t))
2〉 = Aτ 2H (25)

which shows that the increments of Y2(t) are locally stationary.
The Gaussian process with covariance (24) has been used to describe the velocity process

of a particle inside a Sinai billiard with infinite horizon [16]. It is also used in nonlinear
stochastic field theories [17], collective motion of worm-like micellar systems [18], and in
geoscience such as the geopotential height of isobaric surfaces [19], etc. The stretched
exponential function is also widely used to describe relaxation phenomena in disordered
systems where the pertinent time-displaced correlation function decays as a stretched exponent.
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Examples include oxide and polymeric glasses, spin correlations in Cu–Mn and Ag–Mn
spin glasses, dielectric relaxation in a charge–density–wave system and neutron spin–echo
measurements of ionic glasses, etc [20]. Although the exponential function is often used as
a convenient fitting function for empirical data, a theoretical understanding of its underlying
microscopic origin is still lacking.

The spectral density for the process with stretched exponential covariance can be expressed
in a closed form only for α = 1 and α = 2. There are few cases for which the spectral densities
can be obtained in terms of some higher mathematical functions [21]. For example, spectral
densities for α = 1/2 and α = 2/3 are, respectively

S2(ω) =
√

π

2

Aa

|ω|3/2

[
cos

(
a2

4|ω|
)(

1 − 2C

(
a

2
√|ω|

))
+sin

(
a2

4|ω|
)(

1−2S

(
a

2
√|ω|

))]
(26)

and

S2(ω) =
√

π

3

A

|ω| e
2a3

27ω2 W− 1
2 , 1

6

(
4a3

27ω2

)
(27)

where C(z) and S(z) are the two Fresnel integrals and Wµ,ν(z) is the Whittaker function.
Note that for α = 2/3 we have used the corrected version given by Garoni and Frankel [22],
who have recently obtained expressions of S2(ω) for rational values of α in terms of Meijer G
functions and generalized hypergeometric functions.

The asymptotic behaviour of S2(ω) can be obtained by a series expansion for large
arguments (|ω| � 1):

S2(ω) = − 1

π

∞∑
j=1

(−1)j

j !

�(αj + 1)

|ω|αj+1
sin

(
jαπ

2

)
+ O(ω−α(n+1)+1). (28)

Thus, the asymptotic approximation of the spectral density of a process with stretched
exponential covariance is

S2(ω) ∼ �(α + 1) sin
(

πα
2

)
π |ω|α+1

∼ |ω|−(α+1) (29)

where A = a = 1 is used. For α = 2H,S2(ω) has the same asymptotic limit as S1(ω).

2.3. Generalized OU process from fractional Langevin equation

Recall that the ordinary OU process is the stationary solution of the Langevin equation

dY (t)

dt
+ aY (t) = η(t) a > 0 (30)

where η(t) is the standard white noise with

〈η(t)〉 = 0 〈η(t)η(s)〉 = δ(t − s). (31)

The stationary solution is given by

Y (t) =
∫ t

−∞
e−a(t−u)η(u) du. (32)

Now we want to generalize equation (30) to a fractional Langevin equation such that its
stationary solution can be regarded as a fractional OU process. There are two ways to extend
equation (30) to a fractional Langevin equation. One direct way is the following

dβY (t)

dtβ
+ aY (t) = η(t) β > 0 (33)
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where the fractional derivative can be defined in term of the fractional integral [23]

aI
α
t f (t) = 1

�(α)

∫ t

a

(t − u)α−1f (u) du α > 0. (34)

For γ = −α > 0, the fractional derivative aD
γ
t is then defined as fractional integral of order

n − γ (with n − 1 < γ < n) and the ordinary derivative of order n:

aD
γ
t f (t) =

(
d

dt

)n

aD
γ−n
t f (t). (35)

Equations (34) and (35) are known as the fractional integral and fractional derivative of RL
type if a = 0 and the Weyl fractional integral and derivative for a = −∞. We consider the
case of the RL definition for equation (33).

For n − 1 < ν < n and the following boundary conditions

djY (t)

dtj

∣∣∣∣
t=0

= Y 0
j j = 1, 2, . . . , n − 1 (36)

the Laplace transform of equation (33) is

sβỸ (s) + aỸ (s) = η̃(s) +
n∑

j=1

sβ−j Y 0
j (37)

which gives

Ỹ (s) = ñ(s)

sβ + a
+

n∑
j=1

Y 0
j−1

sβ−j

sβ + a
. (38)

The inverse Laplace transform of equation (38) gives

Y3(t) =
n∑

j=1

Y 0
j−1t

j−1Eβ,j (−atβ) +
∫ t

0
(t − u)β−1Eβ,β(−a(t − u)β)η(u) du (39)

where Eα,β is the generalized Mittag–Leffler function defined by [24]:

Eα,β(z) =
∞∑

j=0

zj

�(αj + β)
α > 0 β > 0. (40)

We assume all Y 0
j equal to zero which has no effect on the subsequent conclusion to be drawn.

Y3(t) is a Gaussian process with zero mean and the following covariance

〈Y3(s)Y3(t)〉 =
∫ s

0

Eβ,β(−a(s − u)β)Eβ,β(−a(t − u)β)

(s − u)1−β(t − u)1−β
du

=
∞∑

j,k=0

(−a)j+k

�(βj + β)�(βk + β)

∫ s

0
(s − u)β(j+1)−1(t − u)β(k+1)−1 du

=
∞∑

j,k=1

(−a)j+k−2

�(βj + 1)�(βk)
sβj tβk−1

2F1

(
1, 1 − βk, 1 + βj,

s

t

)
(41)

which shows that Y3(t) is a non-stationary process, hence it cannot be regarded as a generalized
OU process which is supposed to be stationary. We can hope to obtain a stationary solution
analogous to the stationary solution of the Langevin equation (32) by considering the solution
of equation (33) as

Y3(t) =
∫ t

−∞
(t − u)β−1Eβ,β(−a(t − u)β)η(u) du. (42)
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However, the integral (42) is divergent. Thus it is not possible to obtain a stationary process
from the fractional Langevin equation (33).

On the other hand, it is possible to ‘fractionalize’ the Langevin equation in another way,
namely (

d

dt
+ a

)β

Y (t) = η(t) β > 0. (43)

Equation (43) can be solved using Fourier transform which gives

(a − iω)βỸ (ω) = η̃(ω). (44)

The Green function is

G(t) =


tβ−1 e−at

�(β)
for t > 0

0 for t < 0.

(45)

The solution to equation (43) is

Y3(t) = c′
3(a, β)

∫ ∞

−∞
G(t − u)η(u) du (46)

where c′
3(a, β) is a constant which is chosen such that we recover the OU process for β = 1.

The covariance of Y3(t) is given by

C3(τ ) ≡ 〈Y3(t + τ )Y3(t)〉 = a−2ν

2ν
√

π�(ν + 1/2)
|aτ |νKν(|aτ |) (47)

where ν = β − 1/2. Kν is the modified Bessel function of the second kind, which can be
expressed in terms of the modified Bessel function of the first kind I±ν :

Kν(z) = π

2 sin(νπ)
[I−ν(z) − Iν(z)]. (48)

Note that

Iν(z) ∼
( z

2

)ν 1

�(ν + 1)
z → 0 (49)

which gives

Kν(z) ∼ 2ν−1�(ν)z−ν z → 0. (50)

From equation (50), we can compute the variance of Y3(t) which is

C3(0) = 2ν−1c3(a, ν)�(H) (51)

where c3(a, ν) = (2ν
√

π�(ν + 1/2)a2ν)−1.
Just like Y2(t), the increments of Y3(t) satisfy the locally stationary property. It can be

shown that

〈(Y3(t + τ ) − Y3(t))
2〉 ≈ c3(a, ν)

2ν�(ν + 1) sin(νπ)
|aτ |2ν (52)

which has the same form as for Y2(t) if we identify ν with H. We use ν = H for the subsequent
discussion, and call Y3(t) the K-Bessel process.

The spectral density of Y3(t) is given by

S3(ω) = 1

(a2 + ω2)H+1/2
. (53)

Just as the OU process is known as the oscillator process with ‘propagator’ (ω2 + a2)−1, the
K-Bessel process can be called the fractional oscillator process with propagator (ω2 + a2)−β . In
the high-frequency limit ω � a, S3(ω) ∼ ω−(2H+1), which is the generalized spectral density
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Figure 1. The correlation functions of the generalized OU processes.

of FBM. The form of its spectral density allows Y3(t) to be regarded as the ‘correct’ stationary
analogue of FBM, similar to the relation between the OU process and BM. The simplicity of
the spectral density of the K-Bessel process (or its higher-dimensional generalization K-Bessel
field) has provided flexibility in its applications in modelling rainfall variability in hydrology
[25], theory of turbulence [26], electrical noise model in semiconductors [27], spatial analysis
in geoscience [28], etc. So far all the applications of the K-Bessel process are based on either its
covariance (47) or spectral density (53). Our ‘derivation’ of this process based on the fractional
Langevin equation (43) can be regarded as a useful input as far as simulations and modelling
are concerned. As a side remark, we note that just as the stretched exponential function
is better known as the characteristic function of the symmetric Levy stable distribution, the
K-Bessel covariance function (47) has the same functional form as the characteristic function
of the Pearson’s distribution of the seventh kind [29].

The three generalized OU processes are non-Markovian processes with short-range
dependence (SRD). The asymptotic behaviour of their covariances lies between the two
extreme cases, namely the Markovian model with covariance ∼e−aτ and the LRD model
with covariance ∼e−a log τ = τ−a, 0 < a < 1. For sufficiently large τ , covariances Ci(τ )

of Yi(t), i = 1, 2, 3, fall off slower or at most similar to that of the Markovian model, but
they decay faster than that of the LRD model (see figure 1). However, there is one exception
in the case of stretched exponential covariance when 1 < α < 2, i.e. the case of the super-
exponential, which falls off faster than e−aτ .

The three generalized OU processes considered are all of short memory. However,
there also exist Gaussian stationary processes which have the same local covariances as the
generalized OU processes but have LRD. For example, the Gaussian stationary process with
the power-law type of covariance C(τ) = (1 + |τ |α)β/α, 0 < α � 2, β > 0 is such a process.
This non-self-similar Gaussian process has LRD for 0 < β < 1 [30].

In the frequency domain, the spectral densities of generalized OU processes approach
asymptotically to ω−(2H+1) (for α = 2H, ν = H ), the generalized spectral density of FBM
(see figure 2). In the next section we see that this asymptotic behaviour of spectral densities
is reflected in the local covariances of these processes.
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Figure 2. The spectral densities of the stationary processes Y1(t), Y2(t) and Y3(t) for H = 0.75
and α = 1.5.

3. Local stationary representation of FBM

From the above discussion, it is clear that the three generalized OU processes have many
properties in common. In particular, their spectral densities have the same large frequency
limit, and they have local stationary increments. From the first property, we would then expect
these processes to have similar covariances Ci(τ ), i = 1, 2, 3 in the limit τ � 1. This leads
us to another way of linking the three generalized OU processes with FBM, namely they can
be regarded as the locally stationary representations of FBM. In order to do this, it is necessary
to introduce the notion of local stationarity as understood in geostatistics [8]. The term local
stationary process usually denotes a non-stationary random process which is approximately
stationary over regions which are sufficiently small. However, such a term has a slightly
different meaning in geostatistical analysis. In geostatistics, a random process with stationary
increments is known as an intrinsic random function (IRF) or to be more exact a zero-order
IRF, and half the value of the variance of its increments is known as the variogram [8]. For
example, FBM is an IRF with the variogram |τ |2H/2, τ ∈ R.

Recall that a real function G is said to be positive-definite on R if for all t1, . . . , tn ∈ R

and all real λ1, . . . , λn,
n∑

i,j=1

λiλjG(tj − ti) � 0. (54)

Positive-definiteness of G on a finite interval I ⊂ R can also be defined in the same way with
all ti restricted to I. G is called a generalized covariance of an IRF X(t) if〈(

n∑
i=1

λiX(ti)

)2〉
=

n∑
i,j=1

λiλjG(tj − ti ) (55)

for all λi ∈ R such that
∑n

i=1 λi = 0, and all ti ∈ R. The linear combination
∑

λiX(ti) is
called an authorized linear combination [31] or equivalently an allowable linear combination
(ALC) [8].
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We can now define the notion of local stationarity used in geostatistics [8, 31]. Let K
be a positive-definite function on a finite interval I. K is called a locally equivalent stationary
covariance to a generalized covariance G for an IRF X(t) in an interval I if

n∑
i,j=1

λiλjG(tj − ti) =
n∑

i,j=1

λiλjK(tj − ti ) (56)

for an ALC
∑n

i=1 λiX(ti), t1, . . . , tn ∈ I . As the interval I is assumed to be bounded, the
stationarity is then local in the sense that it holds on I. An IRF X(t) is locally stationary over
I if it has a representation Y (t) that coincides on I with a stationary process Yk(t). In other
words, for an ALC

∑n
i=1 λiX(ti),

n∑
i=1

λiYk(ti ) =
n∑

i=1

λiX(ti). (57)

The stationary covariance C(τ) of Yk(t) is equivalent to the generalized covariance G(τ) on I:
n∑

i,j=1

λiλjC(tj − ti ) =
n∑

i,j=1

λiλjG(tj − ti ). (58)

We remark that there are other notions of local stationarity [32] and also that of local asymptotic
stationarity [33].

Now let us consider FBM X1(t) as an example of an IRF and discuss its local stationary
representations. Although IRFs such as FBM are non-stationary, some of them are essentially
stationary on finite intervals. For an ALC of FBM,

∑n
i=1 λiX1(ti ) with t1, . . . , tn ∈ I, we

have 〈(
n∑

i=1

λiX1(ti)

)2〉
= −

n∑
i,j=1

λiλj |tj − ti |2H . (59)

Note that the generalized covariance G(τ) = −|τ |2H is unique up to an additive constant.
Matheron [34] has shown that an IRF X(t) with the variogram b|τ |α has local equivalent
stationary representation on [−T , T ] of the form

C(τ) = b(A − |τ |α) |τ | � 2T (60)

with

A � Aα = T√
π

�

(
1 + α

2

)
�(1 − α/2). (61)

The condition on A is to ensure the positive-definiteness of the covariance (60) so that it
defines a covariance. By taking b = 1, α = 2H, we obtain a local stationary representation
of FBM on [−T , T ].

We next show that the three generalized OU processes can be regarded as the local
stationary representation of FBM. First consider Y1(t) and for |aτ | � 1, its covariance (10)
becomes

C1(τ ) = 1

4Ha
[1 − |aτ |2H ] + O(|aτ |2). (62)

Up to O(|aτ |2), C1(τ ) is of the form (60) and Y1(t) is a local stationary representation of FBM
on [−aτ, aτ ]. By adjusting the positive parameter a, we have some flexibility in the choice
of the interval of the local stationarity.

As for the stretched exponential process Y2(t), the local covariance is given by

C2(τ ) = A[1 − |aτ |2H + O(|aτ |4H)] (63)

for |aτ | � 1. Again, Y2(t) can be regarded as a local stationary representation of FBM.
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Finally, using equations (47), (48) and (49) the local covariance of the generalized OU
process Y3(t) obtained from the fractional Langevin equation can be shown to be

C3(τ ) = c3(a,H)�(H)

21−H

[
1 − π

22H�(H + 1) sin(πH)
|aτ |2H

]
+ O(|aτ |2) (64)

for |aτ | � 1, and ν = H . Note that expression (48) for KH (|aτ |) has been used to obtain
(64). Again, equation (64) is a local equivalent stationary covariance for FBM up to O(|aτ |2).

The three generalized OU processes can be considered as the local stationary
representation of FBM. Thus, at the cost of a relatively minor operating restriction (namely the
need to use the allowable linear combination), we gain the possibility of using local stationary
Gaussian processes to represent IRFs such as FBM. The local stationary covariances of the
three generalized OU processes are of the form

Ci(τ ) = Ci(0) − A|τ |α(1 + O(|τ |β)) τ → 0 (65)

for some β > 0. For Y1(t) and Y3(t), β = 2 − 2H, whereas for Y2(t), β = 2H . On the other
hand, not every IRF has a local stationary representation. One such example is the IRF with
γ (τ) = τ 2. There does exist a real number C(0) such that C(τ) = C(0) − τ 2 is a covariance
function defined on a neighbourhood of τ = 0. We remark that such differences in β would
result in different contributions to the bias in the estimation of the parameter H in applications
[35].

A stationary process with covariance C(τ) of the form (65) for τ → 0 is said to be locally
self-similar [35]. For Gaussian processes, this notion of local self-similarity is equivalent to
the local asymptotic self-similarity introduced by Benassi et al [36] to describe multi-fractional
Brownian motion (MBM) which is FBM indexed by a variable Hurst exponent H(t). MBM
X(t) is locally asymptotically self-similar if

lim
ρ→0+

[
X(t + ρu) − X(t)

ρH(t)

]
= XH(t)(u) (66)

where XH(t)(u) is FBM indexed by H(t) and the equality is in the sense of distributions. Local
asymptotic stationarity of Yi implies Yi(t + ρu) − Yi(t) = Yi(t) for ρ → 0+, which together
with equation (65) can be shown to satisfy equation (66) if H(t) is replaced by H. We can
view a local asymptotic self-similar (or local self-similar) Gaussian process at a point to as
the tangent process at to that tends in distribution to a self-similar process. We note that for a
stationary Gaussian process with covariance (65), its fractal dimension is shown to be given
by 2 − α/2 [37, 38].

Local equivalent stationary covariances have applications in computation and simulation
in addition to being of theoretical interest. They allow optimal prediction and also facilitate
fast and exact simulation of IRFs [8, 28, 39].

4. Self-similar processes from generalized OU processes

In this section, we consider self-similar processes obtained from the generalized OU processes
through the Lamperti transformation. Since one of the self-similar processes, namely FBM
associated with Y1(t), is well-studied, our discussion mainly focuses on the self-similar
processes obtained by applying Lamperti transformations to the generalized OU processes
Y2(t) and Y3(t).

First we briefly describe the characterization of LRD or long memory since processes
with LRD are intimately related to self-similar processes. An intuitive way of looking at the
property of LRD is that events that are arbitrarily distant (either in time or in space) may still
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influence one another. There are several ways of characterizing LRD [40]. The usual way
of defining LRD in the time domain is in terms of decay rates of long-lag covariances, or in
the frequency domain in terms of rates of divergence of spectral densities at low frequencies.
Consider a stationary finite variance process X(t) with covariance C(k) = 〈X(j)X(j + k)〉.
A standard way to define LRD is based on the divergence of the sum of the covariance series:

∞∑
k=−∞

C(k) = ∞. (67)

The slow rate of decay of the covariance of the process is an indicator of LRD. The process is
called SRD or short memory if the summation (67) is finite.

Equivalently, LRD can also be characterized in terms of spectral density. The process X
has LRD if its spectral density S(ω) satisfies

S(ω) ∼ c|ω|−γ ω → 0 (68)

where 0 < γ < 1 and c > 0 is a constant. S(ω) diverges when the frequencies tend to zero.
Equation (68) implies

C(k) ∼ 2c�(1 − γ ) sin
(πγ

2

)
kγ−1 k → ∞ (69)

i.e. the covariance function decays hyperbolically, which is the cause for the divergence of the
sum (67). On the other hand, SRD is characterized by a spectral density, which is bounded
at low frequencies, and a covariance function that decreases faster than equation (69), or
exponentially fast in the case of the Markov process.

For the consideration of the LRD of non-stationary Gaussian processes, the following
characterization of LRD can be used [41, 42]. Let Ĉ = C(τ)/C(0) denote the normalized
covariance of Y (t), a Gaussian stationary process. The process Y (t) is said to have LRD if∫ ∞

0
|Ĉ(τ )| dτ = ∞. (70)

If the integral (70) is finite, Y (t) has SRD.
The condition (70) can be generalized to the non-stationary Gaussian process. In this

case, it is necessary to consider the correlation function

R(s, t) = C(s, t)

[C(s, s)C(t, t)]1/2
(71)

instead of the covariance. A non-stationary Gaussian process X(t) is said to have LRD if∫ ∞

0
|R(t, t + τ )| dτ = ∞. (72)

Alternatively, Y (t) is said to have LRD if for τ → ∞,

R(t, t + τ ) ∼ τ γ ∀t > 0 (73)

with −1 < γ < 0 [42]. We apply the above characterization of LRD (and SRD) to both
generalized OU processes and their self-similar counterparts.

4.1. LRD characteristics of FBM

For completeness we briefly discuss the LRD of FBM. Nearly all the discussions of the LRD
related to FBM are considered in terms of its increment process or the fractional Gaussian
noise (FGN) which is stationary [10]. However, we can also consider the LRD of FBM directly
by looking at its correlation function.
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For fixed s � 0 and t → ∞, the Taylor expansion of the covariance of FBM gives the
leading term as

〈X1(s)X1(t)〉 ∼
{

t2H−1 for H > 1
2

s2H for H < 1
2 .

(74)

This leads to the large t asymptotic correlation for fixed s to behave as

〈X1(s)X1(t)〉 ∼
{

tH−1 for H > 1
2

s−H for H < 1
2

(75)

when t → ∞. Thus by using condition (73), we conclude that FBM has LRD for H ∈ (0, 1)

except for H = 1/2, which corresponds to BM. In the case of BM, we have trivially SRD
with independent increments. On the other hand, the stationary counterpart of FBM, Y1(t),

has SRD since equation (10) shows that its covariance C1(τ ) decreases exponentially for
large τ .

Likewise, RL-FBM X+
1 (t) also has LRD. The correlation of X+

1 (t) can be expressed as

R′
1(t, t + τ ) =

√
2H

(H + 1/2)

√
t

t + τ
2F1

(
1/2 − H, 1, 3/2 + H,

t

t + τ

)

=
√

2H

(H + 1/2)

�(3/2 + H)

�(1/2 − H)

√
t

t + τ

∞∑
j=0

�(1/2 − H + j)

�(3/2 + H + j)

(
t

t + τ

)j

(76)

for τ > 0. This is a monotonic decreasing series, thus it suffices to apply condition (72) to the
leading term (j = 0):

√
2H

(2H + 1/2)

∫ ∞

0
(t + τ )−1/2 dτ = ∞.

Since RL-FBM is defined for H > 0, hence it has LRD for all positive H, except H = 1/2.
Again, the stationary counterpart of RL-FBM has SRD for all H > 0 since its covariance
(21) decays exponentially. The sample paths of the stationary process Y1(t) and the H-ss
process X1(t) are shown in figure 3; see the appendix for a brief discussion on the simulation
techniques.

4.2. Self-similar process associated with the stretched exponential process

FBM provides a relatively simple model for scaling phenomena and fractal time series.
However, it is unlikely that real-life phenomena can be described by a process which is
characterized by just a single parameter, H. In the subsequent discussion, we use the Lamperti
transformation to obtain two new Gaussian H-ss processes which are determined by more than
one parameter.

First, we consider the stretched exponential process Y2(t) which has SRD since∫ ∞

0
C2(τ ) dτ = A

∫ ∞

0
exp[−a|τ |α] dτ

= A

a1/α

�(α)

α
A, a > 0 0 < α � 2. (77)

Applying the Lamperti transformation

X(t) = tH Y (a ln t) (78)
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Figure 3. The sample paths of (a) the stationary process Y1(t) and (b) the self-similar process
X1(t) for H = 0.75.

to Y2(t) results in a H-ss Gaussian process X2(t) with the following covariance

〈X2(s)X2(t)〉 = AsH tH exp

[
−a

(
log

t

s

)α]
(79)

and variance At2H . The increments of X2(t) are non-stationary. In fact, the only Gaussian
self-similar process with stationary increments is FBM. However, the increments of X2(t)

satisfy a weaker property of local stationarity for the special case with a = 2H . For this
particular value of α, we have

〈(X2(t + τ ) − X2(t))
2〉 ∼ τ 2H + O(max(τ 2t2H−2, τ 2H+1t−1) (80)

where 0 < τ � t .
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The correlation function is

R2(t + τ, t) = exp

[
−a

(
log

t + τ

t

)α]
(81)

for τ � 0. By a change of variable, we have∫ ∞

0
R2(t + τ, t) dτ = t

∫ ∞

0
eu−auα

du (82)

which diverges for α < 1. Thus, by the Lamperti transformation of the process with stretched
exponential covariance, we obtain a Gaussian H-ss process with LRD for α < 1. Note that
there are three parameters: the self-similar scaling exponent H, the stretched exponent α and
the multiplicative constant a. Here the parameter a plays a secondary role of controlling the
‘size’ of short memory when α > 1.

Note that we cannot use condition (82) to characterize LRD when α = 1. In this case,
the process Y2(t) reduces to the ordinary OU process, which is a stationary Gaussian Markov
process. The Lamperti transformation of Y2(t) for α = 1 gives a Gaussian self-similar process
with mean zero and covariance

〈X2(s)X2(t)〉 = sH+atH−a s < t. (83)

Recall that a Gaussian process with covariance C(t, s) is Markovian if

C(t, s) = C(t, u)C(u, s)

C(u, u)
t > u > s (84)

which can be easily verified for equation (83). This result can also be deduced directly from the
fact that the Lamperti transformation preserves the Markov property [43, 44]. The uniqueness
of the OU process as a stationary Gaussian Markov process implies that equation (83) defines
an entire class of Gaussian H-ss Markov processes parametrized by H and a. For H = a it
reduces to the time-rescaled BM B(t2H ). The LRD condition (72) fails to apply in this case
since the correlation associated with equation (83) satisfies this condition for 0 < a < 1,
contradicting the SRD which characterizes Markov processes.

The sample paths of the stationary process Y2(t) and the self-similar process X2(t) are
shown in figure 4.

4.3. Self-similar process associated with the K-Bessel process

We first show that the stationary K-Bessel process has SRD. We apply the condition on the
covariance: ∫ ∞

0
C3(τ ) dτ = c3(a,H)

∫ ∞

0
(aτ)HKH (aτ) dτ

= c3(a,H)2H−1�(H + 1/2)

a
. (85)

Equation (85) shows that Y3(t) has SRD for all H > 0, a > 0.

The self-similar process X3(t) obtained from Y3(t) using the Lamperti transformation has
zero mean and covariance

〈X3(t)X3(s)〉 = c3(a, ν)(ts)H
(

a ln
t

s

)ν

Kν

(
a ln

t

s

)
(86)

with t > s. By using equation (50) for the small z asymptotic of the modified Bessel function
KH (z), we obtain the variance

〈(X3(t))
2〉 = �(ν)

21−H
c3(a, ν)t2H . (87)
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Figure 4. The sample paths of (a) the stationary process Y2(t) and (b) the self-similar process
X2(t) for α = 1.5.

The increments of X3(t) are non-stationary. They are locally stationary only if ν = H , just
as the case of X2(t). For τ � t , using equations (86) and (87) and relations (48) and (49) for
the modified Bessel function gives

〈(X3(t + τ ) − X3(t))
2〉 ∼ τ 2H + O(max(τ 2t2H−2, τ 2H+1t−1)). (88)

The correlation function is given by

R3(t + τ, t) =
(
a ln

(
1 +

τ

t

))ν

Kν

(
a ln

(
1 +

τ

t

))
. (89)

With the appropriate change of variable, we obtain∫ ∞

0
R3(t + τ, t) dτ = t

a

∫ ∞

0
e

u
a uνKν(u) du. (90)
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By generalizing a result in [14, p 708, no 16], we obtain

I (z) =
∫ z

0
e

u
a uνKν(u) du

= az1+H ez

2H + 1
(Kν(z) + Kν+1(z)) − 2�(ν + 1)

2ν + 1
. (91)

For large z

Kν(z) �
√

π

2z
e−z

(
1 +

4ν2 − 1

8z

)
. (92)

Using equations (91) and (92), we obtain

lim
x→∞ I (x) = lim

x→∞ xν+ 1
2 e( 1

a
−1)x = ∞ 0 < a < 1. (93)

Thus the integral (90) is divergent for 0 < a < 1, implying LRD for the process X3(t). As
the parameter ν does not determine the memory range of X3(t), it can be identified with H
to ensure its increment process satisfies the local stationary property. Thus, the self-similar
Gaussian process X3(t) is a two-parameter process where H determines the self-similar scaling
and parameter a controls the memory range of the process. The sample paths of Y3(t) and
X3(t) are shown in figure 5.

5. Summary and concluding remarks

Three types of generalized OU process are considered and their properties studied. It is found
that they have similar properties, in particular their local covariances have the same form:
Ci(τ ) ∼ Ci(0) − |τ |2H, τ → 0 (it is assumed that ν = H and α = 2H unless specified
otherwise). This local behaviour in the time domain is reflected in the frequency domain
where all three spectral densities have the same large frequency limit |ω|−(2H+1), similar to
the generalized spectral density of FBM. Such a local property also allows the generalized
OU processes to provide the local equivalent representations of FBM. These local equivalent
stationary representations of FBM allow the optimal prediction and fast accurate simulation
of FBM and integrated FBM [39]. We remark that the local stationary representation only
applies to IRFs such as FBM. The H-ss processes associated with the stretched exponential
process and the K-Bessel process do not have stationary increments, hence the local stationary
representation does not exist for these processes.

We have obtained two new H-ss processes (in addition to FBM) by applying the Lamperti
transformation to the generalized OU processes. In contrast to FBM, the two new self-similar
processes X2(t) and X3(t) are mathematically less tractable since they do not have stationary
increments. However, with the identifications ν = H and α = 2H, increments of X2(t)

and X3(t) satisfy a weaker property of local stationarity. In the case of α �= 2H,X2(t) is
characterized by three parameters H,α and a. H is the self-similar index, α plays the role of
memory index with LRD for 0 < α < 1, and a determines the ‘size’ of SRD when 1 < α � 2.
In the case of X3(t), we have a H-ss process parametrized by two (when ν = H ) parameters H
and a. The process has LRD when a < 1. X2(t) and X3(t) provide more flexible models for
scaling and LRD phenomena such as meteorological time series, financial time series, internet
network traffic, DNA sequences, etc.

Finally we give some comments on the notion of LRD. The question concerning the
actual meaning of LRD and its causes are still far from being resolved. In our discussion,
we have used the definitions of LRD based on decay rates of the covariances and correlation
functions. Doubts about the universal validity of such definitions have been raised and
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Figure 5. The sample paths of (a) the stationary process Y3(t) and (b) the self-similar process
X3(t) for ν = 0.75.

alternative approaches have been suggested [45]. In particular, the characterization of LRD for
non-stationary processes and non-Gaussian processes is shown to be inadequate. In section 4,
we have shown that the test for LRD based on correlation function is not applicable to an
entire class of non-stationary H-ss Gaussian Markov processes.

Recently there have been debates on whether the apparent LRD behaviour in economic
time series and internet traffic data is a statistical artefact originating from stochastic properties
(such as non-stationarity effects, regime switching or structural change, etc) within a SRD
model [46, 47]. LRD is considered for long enough time series, and its effect can disappear
in shorter or intermediate time series. Some recent work indicated that non-Markovian SRD
models with covariances of sub-exponential type such as e−a

√
τ capture better the empirical

data and provide good performanceprediction for video traffic with a finite buffer [48]. Despite
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strong evidence for self-similar LRD models in internet traffic studies, there have been reports
that suggest that certain generalized Markovian models are adequate for internet traffic even
with a high value of scaling index H [49]. There is a growing consensus among physicists
and engineers that a real-life time series cannot be completely described by a particular model
alone. More studies are needed in order to provide a deeper understanding of LRD, its possible
causes and consequences.
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Appendix

The simulation of stationary processes can be performed based on the spectral densities using
the Fourier spectral technique. A simple algorithm is obtained by considering the discrete
Fourier transform of a N-point discrete stationary sequences X, namely

X(t) =
N−1∑
k=0

ak e2π ikt (A.1)

since the coefficients {ak}, k = 0, 1, . . . , N −1 are related to the spectral density S(k) through
〈|ak|2〉 ∼ S(k). Readers are referred to [50] for the details of this standard technique.

The simulation of non-stationary Gaussian H-ss processes is rather difficult when their
increments are non-stationary. In such cases, methods such as the mid-point displacement
technique fail to give a satisfactory result. Moreover, a direct resampling technique based on
the Lamperti transformation of the discrete sample set of the stationary process to produce the
H-ss process has proven to be computationally extensive. Therefore, we resort to a well-known
technique for simulating non-stationary Gaussian processes based on the Karhunan–Loeve
(K–L) expansion, which is also known as the eigenfunction expansion [51].

Consider an orthogonal decomposition of a stochastic process X(t), t ∈ [0, T ] written in
the form

X(t) =
∞∑

k=1

Zkφk(t) 0 < t < T (A.2)

where {φk(t)} are the eigenfunctions of the covariance function C(t1, t2) of the process X(t)

which is assumed to have zero mean. If the covariance kernel C(t1, t2) is symmetric, i.e.
C(t1, t2) = C(t2, t1), then φk are the solutions of the Fredholm integral,∫ T

0
C(t1, t2)φ(t2) dt2 = λφ(t1) (A.3)

where λ denotes the eigenvalues {λk}, each of which corresponds to an eigenfunction φk(t).
{Zk} is a set of orthogonal random variables all having zero mean, and the variance of each
Zk is given by λk such that

〈ZmZn〉 = δmnλn (A.4)〈
Z2

k

〉 = λk. (A.5)

For each of the Gaussian H-ss processes considered here, we calculate the covariance matrix
based on the analytical expression and the numerical eigenfunctions are determined. The
sample paths are generated using the eigenfunction expansion (A2).
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